Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development and validation of Multi-DimensionaI sodium combustion analysis code AQUA-SF

Takata, Takashi; Yamaguchi, Akira

JNC TN9400 2000-065, 152 Pages, 2000/06

JNC-TN9400-2000-065.pdf:6.26MB
JNC-TN9400-2000-065(errata).pdf:0.12MB

ln the liquid metal fast reactor (LMFR) using liquid sodium as a coolant, it is important to evaluate the effect of the sodium combustion on the structure, etc. Most of the previous analytical works are based on a zone model, in which the principal variables are treated as volume-average quantities. Therefore spatial distribution of gas and structure temperatures, chemical species concentration are neglected. Therefore, a multi-dimensional sodium combustion analysis code AQUA-SF (Advanced simulation using Quadratic Upstream differencing Algorithm - Sodium Fire version) has been developed for the purpose of analyzing the sodium combustion phenomenon considering the multi-dimensional effect. This code is based on a multi-dimensional thermal hydraulics code AQUA that employs SIMPLEST-ANL method. Sodium combustion models are coupled with AQUA; one is a liquid droplet model for spray combustion, and the other is a flame sheet model for pool combustion. A gas radiation model is added for radiation heat transfer. Some other models necessary for the sodium combustion analysis, such as a chemical species transfer, a compressibility, are also added. ln AQUA-SF code, bounded QUICK method in space scheme and bounded three-point implicit method in time scheme are implemented. Verification analyses of sodium combustion tests shown in the following have been carried out. (1)pool combustion test (RUN-D1) (2)spray combustion test (RUN-E1) (3)sodium leakage combustion test (Sodium Fire Test-II) (4)smaII-scale leakage combustion test (RUN,F7-1) ln each verification analysis, good agreements are obtained and the validity of AQUA-SF code is confirmed.

JAEA Reports

A feasibility study of the particle interaction method for the flow regimes with the chemical reaction; (Report under the contract between JNC and Toshiba Corporation)

Shirakawa, Noriyuki*; *; *; *

JNC TJ9440 2000-008, 47 Pages, 2000/03

JNC-TJ9440-2000-008.pdf:1.96MB

The numerical thermohydraulic analysis of a LMFR component should involve its whole boundaly in order to evaluate the effect of chemical reaction within it. Therefore, it becomes difficult mainly due to computing time to adopt microscopic approach for the chemical reaction directly. Thus, the thermohydraulic code is required to model the chemically reactive fluid dynamics with constitutive correlations. The reaction rate denpends on the binary contact areas between components such as continuous liquids, droplets, solid particles, and bubbles. The contact areas change sharply according to the interface state between components. Since no experiments to study the jet flow with sodium-water chemical reaction have been done, the goal of this study is to obtain the knowledge of flow regimes and contact areas by analyzing the fluid dynamics of multi-pahse and reactive components mechanistically with the particle interaction method. For the first stage of the study, the applicability of this method to the nalysis of a liquid jet into the other liquid pool was investigated. Based on the literatures, we investigated the jet flow mechanisms and analyzed the experiment of a water jet into a gasoline pool. We also analyzed SWAT3/Run19 test, the jet flow in a rod bundle, to study the applicability of the method to a complicated boundary without a chemical reaction model. The calculated fluid dynamics was in good agreement with the experiment. Furthermore, we studied and formulated the paths of phase change and chemical reaction, and conceptually designed the adopting the heat-transfer-limited phase change model and the synthesizd reaction model with a water-hydrogen conversion ratio.

Journal Articles

Present status of radiation damage mechanism study on reactor pressure vessels based on irradiation correlatin concept

Ishino, Shiori*; Sekimura, Naoto*; Suzuki, Masahide; *; *; Shibahara, Itaru*

Nihon Genshiryoku Gakkai-Shi, 36(5), p.396 - 404, 1994/00

 Times Cited Count:1 Percentile:17.86(Nuclear Science & Technology)

no abstracts in English

Oral presentation

Study on sodium-water reaction phenomena in steam generator of sodium-cooled fast reactor, 30; Overview of four-year study results

Ohshima, Hiroyuki; Kurihara, Akikazu; Yamaguchi, Akira*; Takata, Takashi*; Narabayashi, Tadashi*; Deguchi, Yoshihiro*

no journal, , 

When a heat transfer tube is failed in a steam generator (SG) of a sodium-cooled fast reactor (SFR), pressurized water and/or water vapor leaks into liquid sodium surrounding the tube and forms a reacting jet with high temperature and high alkali. This reacting jet might cause the secondary failure of adjacent heat transfer tubes due to wastage or over-heating tube rapture resulting in undesirable failure propagation. Therefore, the sodium-water reaction phenomenon (SWR) is one of the most important issues for the design and safety assessment of SFRs. The authors have carried out systematic experiments for the elucidation of SWR and developed a new multi-physics numerical simulation system which is based on mechanistic and theoretical modeling of SWR rather than empirical modeling and can contribute to detailed and quantitative evaluations of SWR in any types of SGs. This paper summarizes the results of four-year R&D activities.

Oral presentation

Activity report of research committee for mechanistic evaluation of critical heat flux for nuclear reactors, 4; Discussion about evaluation methods for critical heat flux

Ono, Ayako

no journal, , 

The research committee for mechanistic evaluation of critical heat flux for nuclear reactors reviewed many studies and extracted issues to be considered to establish the evaluation method of critical heat flux based on the mechanism. In this presentation, the outcomes of the activities of the research committee and the future perspective of CHF study will be reported.

5 (Records 1-5 displayed on this page)
  • 1